Suma de los inversos de los cuadrados

  \displaystyle  \sum_{k=1}^{\infty} \frac{1}{k^2} \ = \ \frac{\pi^2}{6}

La siguiente demostración, que no usa cálculo diferencial ni series infinitas, está tomada del libro de A.M.Yaglom & I.M.Yaglom, “Challenging Mathematical Problems with Elementary Solutions“.

A partir de la fórmula del seno del ángulo múltiplo obtenemos las raíces de determinado polinomio y de ahí unas identidades trigonométricas que junto con un hecho básico de trigonometría elemental nos llevan al resultado final.
Leer más

Número de clases de semejanza

Trazamos todas las rectas que pasan por dos vértices de un polígono regular de n lados.

En el conjunto de triángulos que aparecen, el número de clases de triángulos semejantes que hay, o, lo que es lo mismo, el máximo número de triángulos no semejantes entre sí que podemos señalar, es igual al número de particiones de n en tres partes P_3(n), que según la entrada anterior es igual a \lfloor \frac{n^2 + 3}{12} \rfloor.

Demostración:
Los ángulos del mismo color verde o rojo en la figura son iguales, e iguales a la mitad del correspondiente ángulo central (Euclides III.20 y III.21) y los ángulos naranja y azul son la suma y diferencia de un ángulo verde y uno rojo (por Euclides I.32).

De donde se deduce que todos los ángulos de los triángulos en la figura inicial son múltiplos de \frac{180^{ \circ }}{n} , o, en radianes, de \frac{\pi}{n}, y por tanto no hay más triángulos no semejantes que particiones de n en tres partes.

Además todo triángulo en la figura inicial es semejante a un triángulo cuyos tres vértices son vértices del polígono regular, y entre los triángulos de este tipo hay tantos triángulos no congruentes como particiones de n en tres partes.

El problema IMO-2011.2 con JSXGraph

La librería gratuita JSXGraph para JavaScript es una alternativa interesante para generar figuras geométricas animadas e interactivas.
Como práctica en JSXGraph decidí ilustrar el ‘remolino’ descrito en el segundo problema planteado en la Olimpiada Internacional de Matemáticas de 2011:

El enunciado del problema es el siguiente:
Sea S un conjunto finito de dos o más puntos del plano. En S no hay tres puntos colineales. Un remolino es un proceso que empieza con una recta h que pasa por un único punto P de S. Se rota h en el sentido de las manecillas del reloj con centro en P hasta que la recta encuentre por primera vez otro punto de S al cual llamaremos Q. Con Q como nuevo centro se sigue rotando la recta en el sentido de las manecillas del reloj hasta que la recta encuentre otro punto de S. Este proceso continúa indefinidamente.
Demostrar que se puede elegir un punto P de S y una recta h que pasa por P tales que el remolino que resulta usa cada punto de S como centro de rotación un número infinito de veces.

El problema es curioso porque no hace falta saber matemáticas para entender el enunciado ni la solución.

La fórmula de Brahmagupta por Al-Shanni

Si a,b,c,d son los lados de un cuadrilátero inscrito en una circunferencia y s es el semiperímetro, el área S del cuadrilátero es: S = \sqrt{(s-a)(s-b)(s-c)(s-d)}

A partir de las propiedades (P1) y (P2) de la entrada anterior, a las que llamaremos respectivamente “teorema de la cuerda rota” y “lema de Al-Shanni“, tenemos una bonita demostración geométrica, debida a Al-Shanni (siglo X), de la fórmula de Brahmagupta, que no usa la fórmula de Herón (como la de Euler), ni trigonometría (como la que hoy se encuentra en la wikipedia).

La demostración que sigue es una variante de la de Al-Shanni. En una nota1 final indico la diferencia con la original de Al-Shanni presentada por Al-Biruni2.
Leer más

Las propiedades de la cuerda rota

Llamamos cuerda rota a una quebrada ABC inscrita en una circunferencia.
Si M es el punto medio del arco ABC y E es el pie de la perpendicular trazada desde M sobre el segmento mayor AB de la quebrada, entonces:

(P1) E divide a la quebrada ABC en dos partes iguales: AE = EB+BC.
(P2) La diferencia entre las áreas de \triangle AMC y \triangle ABC es el área del rectángulo ME\cdot EB.
(P3) AM^2 = MB^2 + AB\cdot BC, tanto si las longitudes que intervienen en la fórmula son longitudes de arcos ( AB sería el arco AMB, etc) como si son longitudes de cuerdas.

Al-Biruni, en su libro “Cálculo de las cuerdas del círculo a partir de las propiedades de la linea quebrada”, cuyo milenario se cumple en uno de estos años, da 23 demostraciones de (P1) y 9 demostraciones de (P3).
En una de las pruebas de (P1), debida a Al-Shanni, se usa como lema (P2), demostrado independientemente, pero Al-Biruni también demuestra (P2) a partir de (P1), como se expone a continuación.
La demostración de (P1) que sigue se debe a Al-Sijzi y la de (P3) aparece en un libro de problemas traducido del griego por un Yuhanna Ibn Yusuf. Leer más

La tercera ley de Kepler

En la proposición 15 de los Principia Newton demuestra que la ley de gravedad, es decir el hecho de que la fuerza de atracción sea inversamente proporcional al cuadrado de la distancia, implica la tercera ley de Kepler. (Que implica las dos primeras leyes quedó demostrado en las proposiciones 1 y 13.1).

Proposición 14
“Si varios cuerpos giran en torno a un centro común y la fuerza centrípeta es inversamente como el cuadrado de la distancia de los lugares al centro, digo que los lados rectos de las órbitas son como los cuadrados de las áreas barridas en tiempos iguales por los radios trazados al centro”.
Esta es la proposición 14 de los Principia, que demostramos a continuación de forma distinta a como lo hace Newton.
Si F_P es la fuerza en P, y \tau es el área barrida por unidad de tiempo, por la observación de la entrada anterior F_P \propto \dfrac{\tau^2}{ PV \cdot SY^2}.
Si F_P \propto \dfrac{1}{SP^2}, las trayectorias serán secciones cónicas, pero vimos que en una cónica PV \cdot SY^2 = 2\ SL \cdot SP^2, entonces F_P \propto \dfrac{\tau^2}{ SL \cdot SP^2}, y como está dada la proporción F_P \propto \dfrac{1}{SP^2}, será necesariamente SL \propto \tau^2, ó \tau \propto \sqrt{SL}, es decir las áreas barridas por unidad de tiempo en las diferentes cónicas son proporcionales a las raíces de los lados rectos de esas cónicas.

Corolario 14.1
Si la órbita es una elipse, el punto móvil vuelve a la misma posición tras un periodo T. Entonces el área E de la elipse será E = \tau \cdot T, porque \tau es el área barrida por unidad de tiempo, y en el periodo T se barre toda la superficie de la elipse. Por tanto E \propto T \cdot \sqrt{SL}. Como esa área es proporcional al producto M \cdot m de los ejes mayor y menor de la elipse, será M \cdot m \propto T \cdot \sqrt{SL}.

Proposición 15
“Supuesto esto (la ley de gravedad), digo que los tiempos periódicos en las elipses son como los ejes mayores elevados a la potencia 3/2″.
Porque, por Apolonio I.15, m^2 = M \cdot LL', donde LL' es el lado recto, y por tanto m = M^{1/2} \sqrt{LL'}, y sustituyendo en la proporción del corolario 14.1 tenemos M^{3/2} \sqrt{2\ SL} \propto T \sqrt{SL}, es decir M^{3/2} \propto T como queríamos demostrar.