Número de clases de semejanza

Trazamos todas las rectas que pasan por dos vértices de un polígono regular de n lados.

En el conjunto de triángulos que aparecen, el número de clases de triángulos semejantes que hay, o, lo que es lo mismo, el máximo número de triángulos no semejantes entre sí que podemos señalar, es igual al número de particiones de n en tres partes P_3(n), que según la entrada anterior es igual a \lfloor \frac{n^2 + 3}{12} \rfloor.

Demostración:
Los ángulos del mismo color verde o rojo en la figura son iguales, e iguales a la mitad del correspondiente ángulo central (Euclides III.20 y III.21) y los ángulos naranja y azul son la suma y diferencia de un ángulo verde y uno rojo (por Euclides I.32).

De donde se deduce que todos los ángulos de los triángulos en la figura inicial son múltiplos de \frac{180^{ \circ }}{n} , o, en radianes, de \frac{\pi}{n}, y por tanto no hay más triángulos no semejantes que particiones de n en tres partes.

Además todo triángulo en la figura inicial es semejante a un triángulo cuyos tres vértices son vértices del polígono regular, y entre los triángulos de este tipo hay tantos triángulos no congruentes como particiones de n en tres partes.

Un comentario sobre “Número de clases de semejanza

  1. Pingback: Otra demostración de P3(n) ≈ n2/12 | Guirnalda matemática

Escribir un comentario

Tu dirección de correo electrónico no será publicada. Los campos necesarios están marcados *

*

Puedes usar las siguientes etiquetas y atributos HTML: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>